

Advanced Mirror System Demonstrator
Pre-Solicitation Briefing

Albuquerque, New Mexico January 13, 1999

AMSD as a Pathfinder for NGST

Raison d'Etre

- Cast the Net Widely...
 - Ensure that we have multiple technology pathways through NMSD and AMSD to facilitate decision making in 2001
- Fast Cycle Times
 - Emphasize that you generally can't produce things faster without changing your processes
- Cost as an Independent Variable (CAIV)
 - Encourage the designers and manufactures to factor in the cost of a material or process step early
 - Elucidate the cost function for the product at the end
- System Robustness
 - Encourage the design of products that scale easily and degrade gracefully
 - Use process pathfinders as checkpoints along the way to ensure manufacturability
- Effective Teaming
 - Leads should team with your suppliers and outsource things you aren't good at

A NASA Origins Mission

2

Next Generation Space Telescope

Why is AMSD so Important to NGST?

Mission

NGST Top Level Baseline Schedule Progressive Downselect

Telescope Technology Risk Mitigation Flow

NGST Science & Technology Challenges

- September 13-17, 1999 Woods Hole, MA
- <u>Purpose:</u> Bring scientific and technology communities together at one conference for focused discussions of NGST relevant challenges

A NASA Origins Mission

NGST Science & Technology Challenges

PRELIMINARY INFORMATION

Ultra Lightweight Space Optics Challenge Workshop

MARCH 24-25, 1999

THE NAPA VALLEY MARRIOTT HOTEL,
NAPA, CALIFORNIA

Sponsored by NASA, the Jet Propulsion Laboratory, the Goddard Space Flight Center and the George C. Marshall Space Flight Center

- This meeting is a reconnaissance of the long-range technology challenges of the 20-40 meter class telescopes needed for NASA's Origins Program
- These systems include the Next-Next Generation Space Telescope and large optical interferometers designed to characterize extra-solar planets
 - The objective is to provide a forum for technical interchange that will serve to steer NASA investments in existing, emerging and potentially feasible future ultra lightweight space optics technologies and optical system concepts

A NASA Origins Mission

8

Cryogenic Actuators

Use:

- Alignment of primary mirror segments & secondary mirror
- Primary mirror segment figure control (if needed)
- Deformable mirror (DM)
- **Key requirements:**
- Stroke of several mm for position actuators, with resolution of 20 nm and power-off set and hold
- Force actuators for figure control
- Small stroke, 20 nm resolution for DM
- Operation at 30 K (required) & room temperature (desired)
- **State of the art:**
- No known actuator is available that satisfies the alignment actuator conditions in a single device
- Picomotors have 30 nm resolution but do not operate cold
- Piezoceramics & electrostrictive materials loose strain at low temperature

Electromagnetic actuator performance independent of temperature

coarse

lead-screws

Cryogenic Actuators

• AEHINC

Two-stage stepper motor/gear box concept

• American Superconductor

Hexagonal DM actuator array using cryogenic magnetostrictve rods with super conducting coils

• Xinetics, Inc

Modular DM actuator array features rods of single crystal or ceramic crystallites integrated into a monolithic module

• Energen, Inc

Burleigh Instruments

InchwormTM linear motor driven with cryogenic piezoceramic stacks.

Force & position actuator driven

• NASA LaRC

Linear stepper motor using piezocrystal stacks

Cryogenic Magnetostrictive rod driven with a high temperature superconductor

A NASA Origins Mission

Large Optics Technology Design Space A Function of the Operational Environment

Mirror Development - Roadmap

12

Telescope Risk Mitigation Strategy

NGST

